
Stability ofMatter, part 2.

3. Hydrogen abom

4. Uncertainty principle



3 Hogen atom
I -

Letus now discuss the mostbasic example:

the hydrogen atom:

S4) = (14-ice")ex
change
e
of units S4) = ID - star

a= =on fine-structure constant.

Two standard ways stability of hydrogen is
addressed in a course.

8)direct computation
->computation ofall eigenvalues by
separation of variables. It is merely

mentionedwhy the computed ev. ore giving
the whole discretespectrum.

-> easier direct way of showing stability:

finding one special solution tothe err. problem



p(x) =( exp(- zc(x)), C>0.

then
·P(x) > 0

·I 2 - )4(x = -ce
Since 4(X) is an eigenfunction thatis

positive, itcorresponds tothe lowest

eigenvalue
This laststatement is a theorem [Lieb-Loss,
Analysis, the1.5] which is besee on

the fact that

IX fl = (XIII for FC H'CRY
complexvalued.

9)using Heisenberg's uncertaintingprinciple WRONG
trt o
-<+,x4)<p, -x4) = 4 p
I

↓ 5=1,d=3

ESB (r)(e)? E

This implies E4)=F- it



One then often makes the assumption that

Eit
=>E4?(-?--
This argument is false
To see this it is enough to consider

↑=4,tYc orthogond to each other

~density distributions g(x) =I(f,(x) +((x)

= [<i+imer]

isreg localized close
e to origin

now choose fly,0 Cx4, +0

* I <x4g =L

locolited* of narrow shall
(S,ce-,- -P

2-

the S(y) + -

0.



4.Uncertainty principle

uncertainty principle - domination of potential
energy by kinetic energy

we have already seen one example:Heisenberg's
Also from the explicit solution of the hydrogen
atom we can deduce the so called

Coulomb uncertainty principle

Sivaiosmasike?Ir]
1123 IR 123

Itrke Ea =(N1)S in hydrogen doand I

But what about more general potentials?
To this end let us introduce the

Soboler space

HCR):=SeE((RY):KI ll EL(o)3

S20 (not necessarily integer

swis- attes Elle (1+Katl") alle



On HS (R), wedl derivatives can be defined via FT:
-

Du (k) =2rik)(K) -> L2ca

for any 2=(2,2, ...,20) =40,1. .... 3*

with 121 =2,7... +201 S

In particular
- x) alic=Ilc-*allm=
I

- S 12nk1" lUCks1"Ok
Fractional Laplacion 12

Facts(in

Teorem (Soboler inequality(
If d<2s20, then FFEHS(m"

11 fll)as(RY =Ca, IIEsf II,a

of:
·) we use the "layer cake representation":
for 20:

f(x) =G12(.x)) ab ()

where ((ft) =byc(f(y) t).
Inded, () follows from the observation that

H((+(x) =1)[0,f()(t) =) f(x) =st



9) important consequence of1) is

(f(x)a,(x =((bx =r)fxx t3) at
and

~Ifs(POpel =pIsO'me: fast) as
e) back to Soboler. By lager cobe:

&

12πk1S = 6 M ( 12AIS, E) dE
Take 1 GHS(R*). We write:

K: =IIE a)allies -it lacks ab
=(81 (lenkl"> E) lalkldE) ob
=I (Is AC lirl"E) lck1 1

2sk(IE

=>It (r)Pok) dE =lluEasle
=(ludE)dx (*)
IRS

where the function utt is defined vie FT

E+(K) = 1) INKR>E) lle).



We estimate:

(u(x) -
+(x) =16e*k (alk) -E+(h)(4)

=IninHClarkEee all
S (S Ribl lickson)"(ee*t
-

k

6-25)/45
=cKE

when o>2s, =((dis)

By triangle inequality

In())? ((nx)-1nc) - a tes1)=

2[Incell-CI E*]:
where tf = max240) is the positive part off.

Integrating over E we get
⑳ I BEWet(es)DE? I [IGI-CIEe

alincessit =EiAucx -3
--

20
-] El c lukxilits K des
- I
-IS Ins 1dE =C luks/aes ku-2s

Cl
0

&x=k?kilns -tez



We will now prove another inequality that
will beused later. We do itnow since

the method ofproofis analogous

Theorem (Lieb-Thirring kinetic inequality (
Let ok2x20 and 320 (KS are not

necessarily integers). For any NC1,
let

↳ crs)" n B, be outlonormal functions
*

in LCRY) anddenoteg(x)=luncell".
Then

--

ENEsull-Kasi)grtr ex.
IR*

the constant Kolsie is independent of Nandanh.

Proof
- Exactly es in the previous proof() we have

*uza Dime -R (re)den=1

where + (k) =1 (I2nkR>E)E (().

Now we use that ED1*" anare authormal

This implies
bRITK)* EnCESS, are orthonoural in Lin,des



Hence, by Bessel's inequality 3 E(x,e Iell")
zikx

Elanks-mitces)=EI ACIEElaksa
-SeineEl Rab (h) e e
n =1 (d d-2k

--

<IeribersIanti
Have C=((d,K) 20 is finite when 2k

Next, by triangle inequality for 4 vectors

CEkta)"Il CEMERS"
- lancer-an 12 Jan 2

= [S - GE**]1.

Consequently,
S. lutsdE =I-)E

S
17

2 (g(x) d-2k

⑤


